in

The human microbiome encodes resistance to the antidiabetic drug acarbose – Nature


  • 1.

    Chiasson, J. L. et al. Acarbose for prevention of kind 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359, 2072–2077 (2002).

    CAS 
    PubMed 

    Google Pupil
     

  • 2.

    Wehmeier, U. F. & Piepersberg, W. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol. 63, 613–625 (2004).

    CAS 
    PubMed 

    Google Pupil
     

  • 3.

    Yoon, S.-H. & Robyt, J. F. Learn about of the inhibition of 4 alpha amylases through acarbose and its 4IV-α-maltohexaosyl and 4IV-α-maltododecaosyl analogues. Carbohydr. Res. 338, 1969–1980 (2003).

    CAS 
    PubMed 

    Google Pupil
     

  • 4.

    Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics form the body structure and gene expression of the lively human intestine microbiome. Cellular 152, 39–50 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 5.

    Wu, H. et al. Metformin alters the intestine microbiome of people with treatment-naive kind 2 diabetes, contributing to the healing results of the drug. Nat. Med. 23, 850–858 (2017).

    CAS 
    PubMed 

    Google Pupil
     

  • 6.

    Maier, L. et al. Intensive affect of non-antibiotic medicine on human intestine micro organism. Nature 555, 623–628 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 7.

    Whang, A., Nagpal, R. & Yadav, H. Bi-directional drug-microbiome interactions of anti-diabetics. eBioMedicine 39, 591–602 (2019).

    PubMed 

    Google Pupil
     

  • 8.

    Le Bastard, Q. et al. Systematic overview: human intestine dysbiosis prompted through non-antibiotic prescription medicines. Aliment. Pharmacol. Ther. 47, 332–345 (2018).

    PubMed 

    Google Pupil
     

  • 9.

    Maruhama, Y. et al. Results of a glucoside-hydrolase inhibitor (Bay g 5421) on serum lipids, lipoproteins and bile acids, fecal fats and bacterial plants, and intestinal fuel manufacturing in hyperlipidemic sufferers. Tohoku J. Exp. Med. 132, 453–462 (1980).

    CAS 
    PubMed 

    Google Pupil
     

  • 10.

    Su, B. et al. Acarbose medicine impacts the serum ranges of inflammatory cytokines and the intestine content material of bifidobacteria in Chinese language sufferers with kind 2 diabetes mellitus. J. Diabetes 7, 729–739 (2015).

    CAS 
    PubMed 

    Google Pupil
     

  • 11.

    Zhang, X. et al. Results of acarbose at the intestine microbiota of prediabetic sufferers: a randomized, double-blind, managed crossover trial. Diabetes Ther. 8, 293–307 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 12.

    Santilli, A. D., Dawson, E. M., Whitehead, Okay. J. & Whitehead, D. C. Nonmicrobicidal small molecule inhibition of polysaccharide metabolism in human intestine microbes: a possible healing street. ACS Chem. Biol. 13, 1165–1172 (2018).

    CAS 
    PubMed 

    Google Pupil
     

  • 13.

    Baxter, N. T., Lesniak, N. A., Sinani, H., Schloss, P. D. & Koropatkin, N. M. The glucoamylase inhibitor acarbose has a diet-dependent and reversible impact at the murine intestine microbiome. mSphere 4, https://doi.org/10.1128/mSphere.00528-18 (2019).

  • 14.

    Zhang, M. et al. Results of metformin, acarbose, and sitagliptin monotherapy on intestine microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res. Care 7, e000717 (2019).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 15.

    Ahr, H. J. et al. Pharmacokinetics of acarbose. Section I: absorption, focus in plasma, metabolism and excretion after unmarried management of [14C]acarbose to rats, canine and guy. Arzneimittelforschung 39, 1254–1260 (1989).

    CAS 
    PubMed 

    Google Pupil
     

  • 16.

    Zhao, L. et al. Intestine micro organism selectively promoted through nutritional fibers alleviate kind 2 diabetes. Science 359, 1151–1156 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 17.

    Wehmeier, U. F. The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: a growth file. Biocatal. Biotransform. 21, 279–284 (2003).

    CAS 

    Google Pupil
     

  • 18.

    Schmidt, D. D. et al. Alpha-glucosidase inhibitors. New advanced oligosaccharides of microbial foundation. Naturwissenschaften 64, 535–536 (1977).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 19.

    Drepper, A. & Pape, H. Acarbose 7-phosphotransferase from Actinoplanes sp.: purification, homes, and conceivable physiological serve as. J. Antibiot. 49, 664–668 (1996).

    CAS 

    Google Pupil
     

  • 20.

    Goeke, Okay., Drepper, A. & Pape, H. Formation of acarbose phosphate through a cell-free extract from the acarbose manufacturer Actinoplanes sp. J. Antibiot. 49, 661–663 (1996).

    CAS 

    Google Pupil
     

  • 21.

    Human Microbiome Venture, C. Construction, serve as and variety of the wholesome human microbiome. Nature 486, 207–214 (2012).

    ADS 

    Google Pupil
     

  • 22.

    Qin, J. et al. A metagenome-wide affiliation learn about of intestine microbiota in kind 2 diabetes. Nature 490, 55–60 (2012).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 23.

    Nielsen, H. B. et al. Identity and meeting of genomes and genetic parts in advanced metagenomic samples with out the usage of reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    CAS 
    PubMed 

    Google Pupil
     

  • 24.

    Brito, I. L. et al. Cell genes within the human microbiome are structured from world to person scales. Nature 535, 435–439 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 25.

    Lloyd-Value, J. et al. Traces, purposes and dynamics within the expanded Human Microbiome Venture. Nature 550, 61–66 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 26.

    Sugimoto, Y. et al. A metagenomic technique for harnessing the chemical repertoire of the human microbiome. Science 366, eaax9176 (2019).

    CAS 
    PubMed 

    Google Pupil
     

  • 27.

    Rockser, Y. & Wehmeier, U. F. The gac-gene cluster for the manufacturing of acarbose from Streptomyces glaucescens GLA.O: identity, isolation and characterization. J. Biotechnol. 140, 114–123 (2009).

    CAS 
    PubMed 

    Google Pupil
     

  • 28.

    Guo, X. et al. Draft genome series of Streptomyces coelicoflavus ZG0656 finds the putative biosynthetic gene cluster of acarviostatin circle of relatives alpha-amylase inhibitors. Lett. Appl. Microbiol. 55, 162–169 (2012).

    CAS 
    PubMed 

    Google Pupil
     

  • 29.

    Parducci, R. E., Cabrera, R., Baez, M. & Guixe, V. Proof for a catalytic Mg2+ ion and impact of phosphate at the job of Escherichia coli phosphofructokinase-2: regulatory homes of a ribokinase circle of relatives member. Biochemistry 45, 9291–9299 (2006).

    CAS 
    PubMed 

    Google Pupil
     

  • 30.

    Miller, B. G. & Raines, R. T. Figuring out latent enzyme actions: substrate ambiguity inside fashionable bacterial sugar kinases. Biochemistry 43, 6387–6392 (2004).

    CAS 
    PubMed 

    Google Pupil
     

  • 31.

    Fong, D. H. & Berghuis, A. M. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme by means of goal mimicry. EMBO J. 21, 2323–2331 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 32.

    McAuley, M., Huang, M. & Timson, D. J. Dynamic origins of substrate promiscuity in bacterial galactokinases. Carbohydr. Res. 486, 107839 (2019).

    CAS 
    PubMed 

    Google Pupil
     

  • 33.

    Sigrell, J. A., Cameron, A. D., Jones, T. A. & Mowbray, S. L. Construction of Escherichia coli ribokinase in advanced with ribose and dinucleotide decided to one.8 å answer: insights into a brand new circle of relatives of kinase buildings. Construction 6, 183–193 (1998).

    CAS 
    PubMed 

    Google Pupil
     

  • 34.

    Yeung, M. Okay. & Kozelsky, C. S. Transformation of Actinomyces spp. through a gram-negative broad-host-range plasmid. J. Bacteriol. 176, 4173–4176 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 35.

    Flint, H. J., Scott, Okay. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of advanced carbohydrates within the intestine. Intestine Microbes 3, 289–306 (2012).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 36.

    Patnode, M. L. et al. Interspecies festival affects focused manipulation of human intestine micro organism through fiber-derived glycans. Cellular 179, 59–73 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 37.

    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological community of polysaccharide usage amongst human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    CAS 
    PubMed 

    Google Pupil
     

  • 38.

    Leimena, M. M. et al. A complete metatranscriptome research pipeline and its validation the usage of human small gut microbiota datasets. BMC Genom. 14, 530 (2013).

    CAS 

    Google Pupil
     

  • 39.

    Goodrich, J. Okay. et al. Genetic determinants of the intestine microbiome in UK twins. Cellular Host Microbe 19, 731–743 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 40.

    Villmones, H. C. et al. Species degree description of the human ileal bacterial microbiota. Sci. Rep. 8, 4736 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 41.

    Fung, T. C. et al. Intestinal serotonin and fluoxetine publicity modulate bacterial colonization within the intestine. Nat. Microbiol. 4, 2064–2073 (2019).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 42.

    Kumar, S., Stecher, G. & Tamura, Okay. MEGA7: Molecular Evolutionary Genetics Research model 7.0 for larger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 43.

    Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of grownup males. Nat. Microbiol. 3, 356–366 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 44.

    Schirmer, M. et al. Dynamics of metatranscription within the inflammatory bowel illness intestine microbiome. Nat. Microbiol. 3, 337–346 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 45.

    Lloyd-Value, J. et al. Multi-omics of the intestine microbial ecosystem in inflammatory bowel sicknesses. Nature 569, 655–662 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 46.

    Peterson, S. N. et al. Practical expression of dental plaque microbiota. Entrance. Cellular Infect. Microbiol. 4, 108 (2014).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 47.

    Benitez-Paez, A., Belda-Ferre, P., Simon-Soro, A. & Mira, A. Microbiota variety and gene expression dynamics in human oral biofilms. BMC Genom. 15, 311 (2014).


    Google Pupil
     

  • 48.

    Jorth, P. et al. Metatranscriptomics of the human oral microbiome all through well being and illness. mBio 5, e01012-14 (2014).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 49.

    Szafranski, S. P. et al. Practical biomarkers for continual periodontitis and insights into the jobs of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome research. NPJ Biofilms Microbiomes 1, 15017 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 50.

    Schmieder, R. & Edwards, R. High quality keep watch over and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 51.

    Langmead, B. & Salzberg, S. L. Speedy gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 52.

    Chen, I. A. et al. IMG/M v.5.0: an built-in knowledge control and comparative research device for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    CAS 
    PubMed 

    Google Pupil
     

  • 53.

    Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 54.

    Evans, P. R. & Murshudov, G. N. How just right are my knowledge and what’s the answer? Acta Crystallogr. D 69, 1204–1214 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 55.

    Winn, M. D. et al. Assessment of the CCP4 suite and present tendencies. Acta Crystallogr. D 67, 235–242 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 56.

    Sheldrick, G. M. A brief historical past of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS 
    PubMed 
    MATH 
    ADS 

    Google Pupil
     

  • 57.

    Krissinel, E. & Henrick, Okay. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS 
    PubMed 

    Google Pupil
     

  • 58.

    McCoy, A. J. et al. Phaser crystallographic instrument. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 59.

    Emsley, P. & Cowtan, Okay. Coot: model-building equipment for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 60.

    Adams, P. D. et al. PHENIX: a complete Python-based device for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 61.

    Pettersen, E. F. et al. UCSF Chimera—a visualization device for exploratory analysis and research. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 62.

    Kearse, M. et al. Geneious Elementary: an built-in and extendable desktop instrument platform for the group and research of series knowledge. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • Report

    Comments

    Express your views here

    Disqus Shortname not set. Please check settings

    What do you think?

    1k Points
    Upvote Downvote

    Getting Extra Than 6.5 Hours Of Sleep Might Be Connected To Cognitive Decline

    How herbal therapies advertise wholesome steadiness in animals