in

Signatures of a strange metal in a bosonic system – Nature


  • 1.

    Anderson, P. W. The Concept of Superconductivity within the Excessive-TC Cuprates (Princeton Univ. Press, 1998).

  • 2.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Zaanen, J. Why the temperature is excessive. Nature 430, 512–513 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Jin, Ok., Butch, N. P., Kirshenbaum, Ok., Paglione, J. & Greene, R. L. Hyperlink between spin fluctuations and electron pairing in copper oxide superconductors. Nature 476, 73–75 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The unusual steel state of the electron-doped cuprates. Annu. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    CAS 

    Google Scholar
     

  • 6.

    Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Giraldo-Gallo, P. et al. Scale-invariant magnetoresistance in a cuprate superconductor. Science 361, 479–481 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Legros, A. et al. Common T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the traditional state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Varma, C. M. Linear in temperature resistivity and related mysteries together with excessive temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

    ADS 

    Google Scholar
     

  • 11.

    Patel, A. A. & Sachdev, S. Concept of a Planckian steel. Phys. Rev. Lett. 123, 066601 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering charges in metals exhibiting T-linear resistivity. Science 339, 804–807 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Hayes, I. M. et al. Scaling between magnetic subject and temperature within the high-temperature superconductor BaFe2(As1−xPx)2. Nat. Phys. 12, 916–919 (2016).


    Google Scholar
     

  • 14.

    Doiron-Leyraud, N. et al. Correlation between linear resistivity and Tc within the Bechgaard salts and the pnictide superconductor Ba(Fe1−xCox)2As2. Phys. Rev. B 80, 214531 (2009).

    ADS 

    Google Scholar
     

  • 15.

    Cao, Y. et al. Unusual steel in magic-angle graphene with close to Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate unusual metals. SciPost Phys. 6, 061 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 17.

    Cao, C. et al. Common quantum viscosity in a unitary Fermi gasoline. Science 331, 58–61 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Kovtun, P. Ok., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum subject theories from black gap physics. Phys. Rev. Lett. 94, 111601 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Zaanen, J., Liu, Y., Solar, Y.-W. & Schalm, Ok. Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, 2015).

  • 20.

    Hartnoll, S. A., Lucas, A. & Sachdev, S. Holographic quantum matter. Preprint at https://arxiv.org/abs/1612.07324v1 (2016).

  • 21.

    Kapitulnik, A., Kivelson, S. A. & Spivak, B.Anomalous metals: failed superconductors. Rev. Mod. Phys. 91, 011002 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 22.

    Phillips, P. & Dalidovich, D. The elusive Bose steel. Science 302, 243–247 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Mason, N. & Kapitulnik, A. Dissipation results on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic floor state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 25.

    Breznay, N. P. & Kapitulnik, A. Particle–gap symmetry reveals failed superconductivity within the metallic section of two-dimensional superconducting movies. Sci. Adv. 3, e1700612 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Yang, C. et al. Intermediate bosonic metallic state within the superconductor–insulator transition. Science 366, 1505–1509 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Liu, Y. et al. Sort-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline movies. Nano Lett. 20, 5728–5734 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Lindner, H. N. & Auerbach, A. Conductivity of laborious core bosons: a paradigm of a nasty steel. Phys. Rev. B 81, 054512 (2010).

    ADS 

    Google Scholar
     

  • 29.

    Stewart Jr, M. D., Yin, A., Xu, J. M. & Valles Jr, J. M. Superconducting pair correlations in an amorphous insulating nanohoneycomb movie. Science 318, 1273–1275 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Daou, R. et al. Linear temperature dependence of resistivity and alter within the Fermi floor on the pseudogap vital level of a high-Tc superconductor. Nat. Phys. 5, 31–34 (2009).

    CAS 

    Google Scholar
     

  • 31.

    Hayes, I. M. et al. Superconductivity and quantum criticality linked by the Corridor impact in an odd steel. Nat. Phys. 17, 58–62 (2020).


    Google Scholar
     

  • 32.

    Grissonnanche, G. et al. Direct measurement of the higher vital subject in cuprate superconductors. Nat. Commun. 5, 3280 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Eckern, U., Schön, G., & Ambegaokar, V. Quantum dynamics of a superconducting tunnel junction. Phys. Rev. B 30, 6419–6431 (1984).

    ADS 

    Google Scholar
     

  • 35.

    Aji, V. & Varma, C. M. Concept of the quantum vital fluctuations in cuprate superconductors. Phys. Rev. Lett. 99, 067003 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    Chakravarty, S. Understanding Quantum Part Transitions (CRC Press, 2010).

  • 37.

    Zhu, L., Hou, C. & Varma, C. M. Quantum criticality within the two-dimensional dissipative quantum XY mannequin. Phys. Rev. B 94, 235156 (2016).

    ADS 

    Google Scholar
     

  • 38.

    Wen, L., Xu, R., Mi, Y. & Lei, L. A number of nanostructures primarily based on anodized aluminium oxide templates. Nat. Nanotechnol. 12, 244–250 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-Fermi-liquid metals with vital Fermi surfaces: solvable fashions. Phys. Rev. X 8, 031024 (2018).

    CAS 

    Google Scholar
     

  • 40.

    Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a mannequin of a disordered unusual steel. Phys. Rev. X 8, 021049 (2018).

    CAS 

    Google Scholar
     

  • 41.

    Segawa, Ok. & Ando, Y. Transport anomalies and the position of pseudogap within the 60-Ok section of YBa2Cu3O7−δ. Phys. Rev. Lett. 86, 4907–4910 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Tomita, T., Kuga, Ok., Uwatoko, Y., Coleman, P. & Nakatsuji, S. Unusual steel with out magnetic criticality. Science 349, 506–509 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Shen, B. et al. Unusual-metal behaviour in a pure ferromagnetic Kondo lattice. Nature 579, 51–55 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Custers, J. et al. The break-up of heavy electrons at a quantum vital level. Nature 424, 524–527 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    CAS 

    Google Scholar
     

  • 46.

    Prochaska, L. et al. Singular cost fluctuations at a magnetic quantum vital level. Science 367, 285–288 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Hartnoll, S. A. & Hofman, D. M. Domestically vital resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 48.

    Hartnoll, S. A. Concept of common incoherent metallic transport. Nat. Phys. 11, 54–61 (2015).

    CAS 

    Google Scholar
     

  • 49.

    Zaanen, J. Electrons waft in unique materials techniques. Science 351, 1026–1027 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Unusual steel transport realized by gauge/gravity duality. Science 329, 4013–1047 (2010).


    Google Scholar
     

  • 51.

    Davison, R. A., Schalm, Ok. & Zaanen, J. Holographic duality and the resistivity of unusual metals. Phys. Rev. B 89, 245116 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Doniach, S. & Das, D. The Bose steel: a commentary. Braz. J. Phys. 33, 740–743 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular steel movies. Phys. Rev. B 40, 182–196 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Garcia-Barriocanal, J. et al. Electronically pushed superconductor–insulator transition in electrostatically doped La2CuO4+δ skinny movies. Phys. Rev. B 87, 024509 (2013).

    ADS 

    Google Scholar
     

  • 55.

    Han, Z. et al. Collapse of superconductivity in a hybrid tin–graphene Josephson junction array. Nat. Phys. 10, 380–386 (2014).

    CAS 

    Google Scholar
     

  • 56.

    Bøttcher, C. G. L. et al. Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array. Nat. Phys. 14, 1138–1144 (2018)


    Google Scholar
     

  • 57.

    Glatz, A., Varlamov, A. & Vinokur, V. Fluctuation spectroscopy of disordered two-dimensional superconductors. Phys. Rev. B 84, 104510 (2011).

    ADS 

    Google Scholar
     

  • 58.

    Maksimovic, N. et al. Magnetoresistance scaling and the origin of H-linear resistivity in BaFe2(As1−xPx)2. Phys. Rev. X 10, 041062 (2020).

    CAS 

    Google Scholar
     

  • 59.

    Ayres, J. et al. Incoherent transport throughout the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Boyd, C. & Phillips, P. W. Single-parameter scaling within the magnetoresistance of optimally doped La2−xSrxCuO4. Phys. Rev. B 100, 155139 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Rullier-Albenque, F., Alloul, H., Balakirev, F. & Proust, C. Dysfunction, steel–insulator crossover and section diagram in high-Tc cuprates. Europhys. Lett. 81, 37008 (2008).

    ADS 

    Google Scholar
     

  • 62.

    Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 on the pair quantum resistance. Nature 472, 458–460 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Wang, F., Biscaras, J., Erb, A. & Shukla, A. Superconductor–insulator transition in house cost doped one unit cell Bi2.1Sr1.9CaCu2O8+x. Nat. Commun. 12, 2926 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Chakravarty, S., Kivelson, S., Zimanyi, G. T. & Halperin, B. I. Impact of quasiparticle tunneling on quantum-phase fluctuations and the onset of superconductivity in granular movies. Phys. Rev. B 35, 7256–7259 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Kapitulnik, A., Mason, N., Kivelson, S. A. & Chakravarty, S. Results of dissipation on quantum section transitions. Phys. Rev. B 63, 125322 (2001).

    ADS 

    Google Scholar
     

  • 66.

    Kampf, A. & Schön, G. Quantum results and the dissipation by quasiparticle tunneling in arrays of Josephson junctions. Phys. Rev. B 36, 3651–3660 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Tikhonov, Ok. S. & Feigel’man, M. V. Unusual steel state close to quantum superconductor–steel transition in skinny movies. Ann. Phys. 417, 168138 (2020).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Report

    What do you think?

    590 Points
    Upvote Downvote

    John Mulaney’s Ex Anna Marie Tendler Goes Topless In Empowering Post On Surviving Breakup: ‘S**t Got Real’ – Perez Hilton

    January 2022 Fresh Pix