in

Mechanism for the activation of the anaplastic lymphoma kinase receptor – Nature


  • 1.

    Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 2.

    Orthofer, M. et al. Identity of ALK in thinness. Mobile 181, 1246–1262 (2020).

    CAS 
    PubMed 

    Google Pupil
     

  • 3.

    Hallberg, B. & Palmer, R. H. Mechanistic perception into ALK receptor tyrosine kinase in human most cancers biology. Nat. Rev. Most cancers 13, 685–700 (2013).

    CAS 
    PubMed 

    Google Pupil
     

  • 4.

    Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 5.

    George, R. E. et al. Activating mutations in ALK supply a healing goal in neuroblastoma. Nature 455, 975–978 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 6.

    Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 7.

    Mosse, Y. P. et al. Identity of ALK as a big familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 8.

    Morris, S. W. et al. ALK, the chromosome 2 gene locus altered through the t(2;5) in non-Hodgkin’s lymphoma, encodes a unique neural receptor tyrosine kinase this is extremely associated with leukocyte tyrosine kinase (LTK). Oncogene 14, 2175–2188 (1997).

    CAS 
    PubMed 

    Google Pupil
     

  • 9.

    Lemmon, M. A. & Schlessinger, J. Mobile signaling through receptor tyrosine kinases. Mobile 141, 1117–1134 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 10.

    Zhang, H. et al. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor through a signaling display of the extracellular proteome. Proc. Natl Acad. Sci. USA 111, 15741–15745 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 11.

    Guan, J. et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 4, e09811 (2015).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 12.

    Reshetnyak, A. V. et al. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: hierarchy and specificity of ligand–receptor interactions. Proc. Natl Acad. Sci. USA 112, 15862–15867 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 13.

    Mo, E. S., Cheng, Q., Reshetnyak, A. V., Schlessinger, J. & Nicoli, S. Alk and Ltk ligands are very important for iridophore construction in zebrafish mediated through the receptor tyrosine kinase Ltk. Proc. Natl Acad. Sci. USA 114, 12027–12032 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 14.

    Fadeev, A. et al. ALKALs are in vivo ligands for ALK circle of relatives receptor tyrosine kinases within the neural crest and derived cells. Proc. Natl Acad. Sci. USA 115, E630–E638 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 15.

    Reshetnyak, A. V. et al. Identity of a biologically lively fragment of ALK and LTK-ligand 2 (augmentor-α). Proc. Natl Acad. Sci. USA 115, 8340–8345 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 16.

    Crick, F. H. & Wealthy, A. Construction of polyglycine II. Nature 176, 780–781 (1955).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 17.

    Warkentin, E. et al. An extraordinary polyglycine kind II-like helix motif in naturally happening proteins. Proteins 85, 2017–2023 (2017).

    CAS 
    PubMed 

    Google Pupil
     

  • 18.

    Loren, C. E. et al. A an important position for the Anaplastic lymphoma kinase receptor tyrosine kinase in intestine construction in Drosophila melanogaster. EMBO Rep. 4, 781–786 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 19.

    Jumper, J. et al. Extremely correct protein constitution prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 20.

    Endres, N. F. et al. Conformational coupling around the plasma membrane in activation of the EGF receptor. Mobile 152, 543–556 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 21.

    Myers, Ok. V., Amend, S. R. & Pienta, Ok. J. Focused on Tyro3, Axl and MerTK (TAM receptors): implications for macrophages within the tumor microenvironment. Mol. Most cancers 18, 94 (2019).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 22.

    Grasberger, B., Minton, A. P., DeLisi, C. & Metzger, H. Interplay between proteins localized in membranes. Proc. Natl Acad. Sci. USA 83, 6258–6262 (1986).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 23.

    Klein, P., Mattoon, D., Lemmon, M. A. & Schlessinger, J. A structure-based style for ligand binding and dimerization of EGF receptors. Proc. Natl Acad. Sci. USA 101, 929–934 (2004).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 24.

    Kuriyan, J. & Eisenberg, D. The foundation of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    CAS 
    PubMed 
    ADS 

    Google Pupil
     

  • 25.

    Diwanji, D., Thaker, T. & Jura, N. Greater than the sum of the portions: towards full-length receptor tyrosine kinase constructions. IUBMB Lifestyles 71, 706–720 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 26.

    Murray, P. B. et al. Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Sci. Sign. 8, ra6 (2015).

    PubMed 

    Google Pupil
     

  • 27.

    Li, T. et al. Structural foundation for ligand reception through anaplastic lymphoma kinase. Nature https://doi.org/10.1038/s41586-021-04141-7 (2021).

  • 28.

    Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic constructions of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    PubMed 

    Google Pupil
     

  • 29.

    Monneau, Y. R. et al. Exploiting E. coli auxotrophs for leucine, valine, and threonine particular methyl labeling of enormous proteins for NMR programs. J. Biomol. NMR 65, 99–108 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 30.

    Rossi, P., Monneau, Y. R., Xia, Y., Ishida, Y. & Kalodimos, C. G. Toolkit for NMR research of methyl-labeled proteins. Strategies Enzymol. 614, 107–142 (2019).

    CAS 
    PubMed 

    Google Pupil
     

  • 31.

    Xie, T., Saleh, T., Rossi, P. & Kalodimos, C. G. Conformational states dynamically populated through a kinase decide its serve as. Science 370, eabc2754 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 32.

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction information gathered in oscillation mode. Strategies Enzymol. 276, 307–326 (1997).

    CAS 
    PubMed 

    Google Pupil
     

  • 33.

    Hendrickson, W. A. & Ogata, C. M. Segment resolution from multiwavelength anomalous diffraction measurements. Strategies Enzymol. 276, 494–523 (1997).

    CAS 
    PubMed 

    Google Pupil
     

  • 34.

    Terwilliger, T. C. et al. Determination-making in constitution resolution the usage of Bayesian estimates of map high quality: the PHENIX AutoSol wizard. Acta Crystallogr. D 65, 582–601 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 35.

    Liebschner, D. et al. Macromolecular constitution resolution the usage of X-rays, neutrons and electrons: fresh traits in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    CAS 

    Google Pupil
     

  • 36.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and construction of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 37.

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing device according to UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS 
    PubMed 

    Google Pupil
     

  • 38.

    Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced tool for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    PubMed 

    Google Pupil
     

  • 39.

    Lange, O. F. et al. Decision of resolution constructions of proteins as much as 40 kDa the usage of CS-Rosetta with sparse NMR information from deuterated samples. Proc. Natl Acad. Sci. USA 109, 10873–10878 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 40.

    Shen, Y. & Bax, A. Protein spine and sidechain torsion angles predicted from NMR chemical shifts the usage of synthetic neural networks. J. Biomol. NMR 56, 227–241 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 41.

    Rossi, P., Xia, Y., Khanra, N., Veglia, G. & Kalodimos, C. G. 15N and 13C- SOFAST-HMQC modifying complements 3-D-NOESY sensitivity in extremely deuterated, selectively [1H,13C]-labeled proteins. J. Biomol. NMR 66, 259–271 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 42.

    Monneau, Y. R. et al. Computerized methyl project in huge proteins through the MAGIC set of rules. J. Biomol. NMR 69, 215–227 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 43.

    Guntert, P. Computerized NMR constitution calculation with CYANA. Strategies Mol. Biol. 278, 353–378 (2004).

    CAS 
    PubMed 

    Google Pupil
     

  • 44.

    Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. Refinement of protein constructions in particular solvent. Proteins 50, 496–506 (2003).

    CAS 
    PubMed 

    Google Pupil
     

  • 45.

    Brunger, A. T. Model 1.2 of the Crystallography and NMR device. Nat. Protoc. 2, 2728–2733 (2007).

    CAS 
    PubMed 

    Google Pupil
     

  • 46.

    Bhattacharya, A., Tejero, R. & Montelione, G. T. Comparing protein constructions decided through structural genomics consortia. Proteins 66, 778–795 (2007).

    CAS 
    PubMed 

    Google Pupil
     

  • 47.

    Tejero, R., Snyder, D., Mao, B., Aramini, J. M. & Montelione, G. T. PDBStat: a common restraint converter and reticence research tool package deal for protein NMR. J. Biomol. NMR 56, 337–351 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 48.

    Mastronarde, D. N. Computerized electron microscope tomography the usage of tough prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 49.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for progressed cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 50.

    Zivanov, J. et al. New equipment for automatic high-resolution cryo-EM constitution resolution in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 51.

    Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly tool for single-particle symbol processing. eLife 7, e35383 (2018).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 52.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM constitution resolution. Nat. Strategies 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Pupil
     

  • 53.

    Pettersen, E. F. et al. UCSF Chimera–a visualization device for exploratory analysis and research. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • 54.

    Afonine, P. V. et al. Actual-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS 

    Google Pupil
     

  • 55.

    Williams, C. J. et al. MolProbity: extra and higher reference information for progressed all-atom constitution validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Pupil
     

  • 56.

    Kortt, A. A., Great, E. & Gruen, L. C. Research of the binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase from tern and whale the usage of the BIAcore biosensor: impact of immobilization stage and waft charge on kinetic research. Anal. Biochem. 273, 133–141 (1999).

    CAS 
    PubMed 

    Google Pupil
     

  • 57.

    Zhao, H., Brautigam, C. A., Ghirlando, R. & Schuck, P. Evaluation of present strategies in sedimentation pace and sedimentation equilibrium analytical ultracentrifugation. Curr. Protoc. Protein Sci.71, 20.12.1–20.12.49 (2013).


    Google Pupil
     

  • 58.

    Schuck, P. Measurement-distribution research of macromolecules through sedimentation pace ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Pupil
     

  • 59.

    Zhao, H. et al. A multilaboratory comparability of calibration accuracy and the efficiency of exterior references in analytical ultracentrifugation. PLoS ONE 10, e0126420 (2015).

    PubMed 
    PubMed Central 

    Google Pupil
     

  • 60.

    Brautigam, C. A. Calculations and publication-quality illustrations for analytical ultracentrifugation information. Strategies Enzymol. 562, 109–133 (2015).

    CAS 
    PubMed 

    Google Pupil
     

  • 61.

    Folta-Stogniew, E. & Williams, Ok. R. Decision of molecular lots of proteins in resolution: implementation of an HPLC measurement exclusion chromatography and laser mild scattering carrier in a core laboratory. J. Biomol. Tech. 10, 51–63 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  • Report

    Comments

    Express your views here

    Disqus Shortname not set. Please check settings

    What do you think?

    1k Points
    Upvote Downvote

    Getting Extra Than 6.5 Hours Of Sleep Might Be Connected To Cognitive Decline

    How herbal therapies advertise wholesome steadiness in animals