Mechanical forcing of the North American monsoon via orography – Nature

  • 1.

    Douglas, M. W., Maddox, R. A., Howard, Ok. & Reyes, S. The Mexican monsoon. J. Clim. 6, 1665–1677 (1993).

    Google Pupil

  • 2.

    Adams, D. Ok. & Comrie, A. C. The North American monsoon. Bull. Am. Meteorol. Soc. 78, 2197–2213 (1997).

    Google Pupil

  • 3.

    Tang, M. & Reiter, E. R. Plateau monsoons of the Northern Hemisphere: a comparability between North The united states and Tibet. Mon. Climate Rev. 112, 617–637 (1984).

    Google Pupil

  • 4.

    Vera, C. et al. Towards a unified view of the American monsoon methods. J. Clim. 19, 4977–5000 (2006).

    Google Pupil

  • 5.

    Mechoso, C. R., Robertson, A. W., Ropelewski, C. F. & Grimm, A. M. in The World Monsoon Machine: Analysis and Forecast (eds Chang, C.-P. et al.) Tropical Meteorology Analysis Programme Document No. 70; 197–206 (No. 1266, WMO/TD, 2005);

  • 6.

    Bryson, R. A. & Lowry, W. P. Synoptic climatology of the Arizona summer season precipitation singularity. Bull. Amer. Meteor. Soc. 36, 329–339 (1955).

    Google Pupil

  • 7.

    Krishnamurti, T. N. Tropical east-west circulations all over the northern summer season. J. Atmos. Sci. 28, 1342–1347 (1971).

    Google Pupil

  • 8.

    Broccoli, A. J. & Manabe, S. The consequences of orography on midlatitude Northern Hemisphere dry climates. J. Clim. 5, 1181–1201 (1992).

    Google Pupil

  • 9.

    Stensrud, D., Gall, R., Mullen, S. & Howard, Ok. Fashion climatology of the Mexican monsoon. J. Clim. 8, 1775–1794 (1995).

    Google Pupil

  • 10.

    Schmitz, J. T. & Mullen, S. L. Water vapor delivery related to {the summertime} North American monsoon as depicted via ECMWF analyses. J. Clim. 9, 1621–1634 (1996).

    Google Pupil

  • 11.

    Johnson, R. H., Ciesielski, P. E., McNoldy, B. D., Rogers, P. J. & Taft, R. Ok. Multiscale variability of the drift all over the North American Monsoon Experiment. J. Clim. 20, 1628–1648 (2007).

    Google Pupil

  • 12.

    Berbery, E. H. Mesoscale moisture research of the North American monsoon. J. Clim. 14, 121–137 (2001).

    Google Pupil

  • 13.

    Nesbitt, S., Gochis, D. & Lang, T. The diurnal cycle of clouds and precipitation alongside the Sierra Madre Occidental seen all over NAME-2004: implications for hot season precipitation estimation in advanced terrain. J. Hydrometeorol. 9, 728–743 (2008).

    Google Pupil

  • 14.

    Ting, M. & Wang, H. The position of the North American topography at the upkeep of the Nice Plains summer season low-level jet. J. Atmos. Sci. 63, 1056–1068 (2006).

    Google Pupil

  • 15.

    Wexler, H. A boundary layer interpretation of the low-level jet. Tellus 13, 368–378 (1961).

    Google Pupil

  • 16.

    Barlow, M., Nigam, S. & Berbery, E. Evolution of the North American Monsoon Machine. J. Clim. 11, 2238–2257 (1997).

    Google Pupil

  • 17.

    Collier, J. C. & Zhang, G. J. Results of higher horizontal decision on simulation of the North American monsoon within the NCAR CAM3: an analysis in keeping with floor, satellite tv for pc, and reanalysis information. J. Clim. 20, 1843–1861 (2007).

    Google Pupil

  • 18.

    Pascale, S. et al. The have an effect on of horizontal decision on North American monsoon Gulf of California moisture surges in a set of coupled international local weather fashions. J. Clim. 29, 7911–7936 (2016).

    Google Pupil

  • 19.

    Varuolo-Clarke, A. M., Reed, Ok. A. & Medeiros, B. Characterizing the North American monsoon within the Neighborhood Setting Fashion: sensitivity to decision and topography. J. Local weather 32, 8355–8372 (2019).

    Google Pupil

  • 20.

    Hu, S. & Boos, W. The physics of orographic increased heating in radiative–convective equilibrium. J. Atmos. Sci. 74, 2949–2965 (2017).

    Google Pupil

  • 21.

    Gill, A. E. Some easy answers for heat-induced tropical move. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Google Pupil

  • 22.

    Rodwell, M. J. & Hoskins, B. J. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122, 1385–1404 (1996).

    Google Pupil

  • 23.

    Simpson, I. R., Seager, R., Shaw, T. A. & Ting, M. Mediterranean summer season local weather and the significance of Center East topography. J. Clim. 28, 1977–1996 (2015).

    Google Pupil

  • 24.

    Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Reasons of trade in Northern Hemisphere wintry weather meridional winds and regional hydroclimate. Nat. Clim. Trade 6, 65–70 (2016).

    Google Pupil

  • 25.

    Rodwell, M. J. & Hoskins, B. J. Subtropical anticyclones and summer season monsoons. J. Clim. 14, 3192–3211 (2001).

    Google Pupil

  • 26.

    Emanuel, Ok. A. Atmospheric Convection (Oxford Univ. Press, 1994).

  • 27.

    Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in one column. J. Clim. 13, 4378–4392 (2000).

    Google Pupil

  • 28.

    Privé, N. C. & Plumb, R. A. Monsoon dynamics with interactive forcing. Section II: have an effect on of eddies and uneven geometries. J. Atmos. Sci. 64, 1431–1442 (2007).

    Google Pupil

  • 29.

    Nie, J., Boos, W. R. & Kuang, Z. Observational analysis of a convective quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010).

    Google Pupil

  • 30.

    Higgins, R. W., Chen, Y. & Douglas, A. V. Interannual variability of the North American heat season precipitation regime. J. Clim. 12, 653–680 (1999).

    Google Pupil

  • 31.

    Hersbach, H. et al. The ERA5 international reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Pupil

  • 32.

    Ecu Centre for Medium-Vary Climate Forecasts ERA5 Reanalysis (0.25 Level Latitude-Longitude Grid) (Analysis Information Archive on the Nationwide Heart for Atmospheric Analysis, Computational and Knowledge Programs Laboratory, accessed 30 April 2020);

  • 33.

    Hersbach, H. et al. ERA5 Per month Averaged Information on Unmarried Ranges from 1979 to Provide (Copernicus Local weather Trade Provider Local weather Information Retailer, accessed 25 February 2021);

  • 34.

    Gelaro, R. et al. The Fashionable-Technology Retrospective Research for Analysis and Packages, Model 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).


    Google Pupil

  • 35.

    World Modeling and Assimilation Place of job MERRA-2 tavgM_2d_slv_Nx: second,Per month imply,Time-Averaged,Unmarried-Stage,Assimilation,Unmarried-Stage Diagnostics V5.12.4 (Goddard Earth Sciences Information and Knowledge Products and services Heart, accessed 1 March 2021);

  • 36.

    Huffman, G., Stocker, E., Bolvin, D., Nelkin, E. & Tan, J. GPM IMERG Ultimate Precipitation L3 1 Day 0.1 Level x 0.1 Level V06 (ed. Savtchenko, A.) (Goddard Earth Sciences Information and Knowledge Products and services Heart, accessed 3 Would possibly 2021);

  • 37.

    Schneider, U. et al. GPCC’s new land floor precipitation climatology in keeping with quality-controlled in situ information and its position in quantifying the worldwide water cycle. Theor. Appl. Climatol. 115, 15–40 (2013).

    Google Pupil

  • 38.

    Schneider, U. et al. GPCC Complete Information Per month Product Model 7.0 at 0.5°: Per month Land-Floor Precipitation from Rain-Gauges Constructed on GTS-Based totally and Ancient Information (Federal Ministry of Shipping and Virtual Infrastructure, accessed 1 April 2020);

  • 39.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Model 4 of the CRU TS per month high-resolution gridded multivariate local weather dataset. Sci. Information 7, 109 (2020).

    PubMed Central 

    Google Pupil

  • 40.

    CRU TS4.00: Climatic Analysis Unit (CRU) Time-Collection (TS) Model 4.00 of Prime-Answer Gridded Information of Month-by-Month Variation in Local weather, Precipitation Per month Way (The Centre for Environmental Information Research UK, accessed 3 April 2020);

  • 41.

    NOAA Nationwide Geophysical Information Heart ETOPO1 1 Arc-Minute World Reduction Fashion (NOAA Nationwide Facilities for Environmental Knowledge, accessed 14 January 2021).

  • 42.

    Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute World Reduction Fashion: Procedures, Information Assets and Research NOAA Technical Memorandum NESDIS NGDC-24 (Nationwide Geophysical Information Heart, NOAA, accessed 14 January 2021);

  • 43.

    Serra, Y. L. et al. The North American Monsoon GPS Transect Experiment 2013. Bull. Am. Meteorol. Soc. 97, 2103–2115 (2016).

    Google Pupil

  • 44.

    Pérez-Ruiz, E. R. et al. Panorama controls on water-energy-carbon fluxes throughout other ecosystems all over the North American monsoon. J. Geophys. Res. Biogeosci. 126, e2020JG005809 (2021).

    Google Pupil

  • 45.

    Cabral-Cano, E. et al. TLALOCNet: a continuing GPS-Met spine in Mexico for seismotectonic and atmospheric analysis. Seismol. Res. Lett.89, 373–381 (2018).

    Google Pupil

  • 46.

    Neale, R. B. et al. Description of the NCAR Neighborhood Setting Fashion (CAM 5.0) No. NCAR/TN-464+STR (NCAR, 2012);

  • 47.

    Oleson, Ok. W. et al. Technical Description of Model 4.0 of the Neighborhood Land Fashion (CLM) No. NCAR/TN-478+STR (NCAR, 2010).

  • 48.

    Wehner, M. F. et al. Answer dependence of long term tropical cyclone projections of CAM5.1 within the U.S. CLIVAR Typhoon Running Workforce idealized configuration. J. Clim. 28, 3905–3925 (2015).

    Google Pupil

  • 49.

    Wehner, M. F., Reed, Ok. A., Loring, B., Stone, D. & Krishnan, H. Adjustments in tropical cyclones beneath stabilized 1.5 and a couple of.0°C international warming situations as simulated via the Neighborhood Atmospheric Fashion beneath the HAPPI protocols. Earth Syst. Dynam. 9, 187–195 (2018).

    Google Pupil

  • 50.

    Mo, Ok. C., Juang, H. M. H., Higgins, R. W. & Tune, Y. Affect of style decision at the prediction of summer season precipitation over america and Mexico. J. Clim. 18, 3910–3927 (2005).

    Google Pupil

  • 51.

    Hales, J. E. Surges of maritime tropical air northward over the Gulf of California. Mon. Climate Rev. 100, 298–306 (1972).

    Google Pupil

  • 52.

    Brenner, I. S. A surge of maritime tropical air–Gulf of California to the southwestern United States. Mon. Climate Rev. 102, 375–389 (1974).

    Google Pupil

  • 53.

    Turrent, C. & Cavazos, T. Position of the land-sea thermal distinction within the interannual modulation of the North American Monsoon. Geophys. Res. Lett. 36, L02808 (2009).

    Google Pupil

  • 54.

    Finch, Z. O. & Johnson, R. H. Observational research of an upper-level inverted trough all over the 2004 North American Monsoon Experiment. Mon. Climate Rev. 138, 3540–3555 (2010).

    Google Pupil

  • 55.

    Liang, X., Zhu, J., Kunkel, Ok. E., Ting, M. & Wang, J. X. L. Do CGCMs simulate the North American monsoon precipitation seasonal-interannual variability? J. Clim. 21, 4424–4448 (2008).

    Google Pupil

  • 56.

    Geil, Ok. L., Serra, Y. L. & Zeng, X. Review of CMIP5 style simulations of the North American monsoon gadget. J. Clim. 26, 8787–8801 (2013).

    Google Pupil

  • 57.

    Pascale, S. et al. Weakening of the North American monsoon with international warming. Nat. Clim. Trade 7, 806–812 (2017).

    Google Pupil

  • 58.

    Ting, M. & Yu, L. Stable reaction to tropical heating in wavy linear and nonlinear baroclinic fashions. J. Atmos. Sci. 55, 3565–3582 (1998).

    Google Pupil

  • 59.

    Ting, M. & Held, I. M. The desk bound wave reaction to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci. 47, 2546–2556 (1990).

    Google Pupil

  • 60.

    Ting, M. The desk bound wave reaction to a tropical SST anomaly in an idealized GCM. J. Atmos. Sci. 51, 3286–3308 (1994).

    Google Pupil

  • 61.

    Held, I. M., Ting, M. & Wang, H. Northern wintry weather desk bound waves: concept and modeling. J. Clim. 15, 2125–2144 (2002).

    Google Pupil

  • 62.

    Hoskins, B. J. & Rodwell, M. J. A style of the Asian summer season monsoon. Section I: the worldwide scale. J. Atmos. Sci. 52, 1329–1340 (1995).

    Google Pupil

  • Report


    Leave a Reply

    Disqus Shortname not set. Please check settings

    What do you think?

    378 Points
    Upvote Downvote

    Getting Extra Than 6.5 Hours Of Sleep Might Be Connected To Cognitive Decline

    No less than 210 coronavirus instances are related to a South Korean non secular agreement.