Elastomeric electrolytes for high-energy solid-state lithium batteries – Nature


  • 1.

    Armand, M. & Tarascon, J.-M. Constructing higher batteries. Nature 451, 652–657 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Choi, J. W. & Aurbach, D. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium development mechanisms in liquid electrolytes. Vitality Environ. Sci. 9, 3221–3229 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Lin, D. C., Liu, Y. & Cui, Y. Reviving the lithium steel anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wan, J. Y. et al. Ultrathin, versatile, strong polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lee, Y.-G. et al. Excessive-energy long-cycling all-solid-state lithium steel batteries enabled by silver-carbon composite anodes. Nat. Vitality 5, 299–308 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Vitality 2, 17035 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Zhao, Q., Liu, X. T., Stalin, S., Khan, Okay. & Archer, L. A. Stable-state polymer electrolytes with in-built quick interfacial transport for secondary lithium batteries. Nat. Vitality 4, 365–373 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Zhang, X. Y. et al. Lengthy biking life solid-state Li steel batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zhu, Y., Cao, J., Chen, H., Yu, Q. & Li, B. Excessive electrochemical stability of a 3D cross-linked community PEO@nano-SiO2 composite polymer electrolyte for lithium steel batteries. J. Mater. Chem. A 7, 6832–6839 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Lee, W. et al. Ceramic-salt composite electrolytes from chilly sintering. Adv. Funct. Mater. 29, 1807872 (2019).


    Google Scholar
     

  • 12.

    Yang, X. et al. Figuring out the limiting issue of the electrochemical stability window for PEO-based strong polymer electrolytes: most important chain or terminal –OH group? Vitality Environ. Sci. 13, 1318–1325 (2020).

    CAS 

    Google Scholar
     

  • 13.

    Chen, R.-J. et al. Addressing the interface points in all-solid-state bulk-type lithium ion battery through an all-composite strategy. ACS Appl. Mater. Interfaces 9, 9654–9661 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Bouchet, R. et al. Single-ion BAB triblock copolymers as extremely environment friendly electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Zhou, D. et al. In situ synthesis of a hierarchical all-solid-state electrolyte based mostly on nitrile supplies for high-performance lithium-ion batteries. Adv. Vitality Mater. 5, 1500353 (2015).


    Google Scholar
     

  • 16.

    Jiang, T. et al. Solvent-free synthesis of skinny, versatile, nonflammable garnet-based composite strong electrolyte for all-solid-state lithium batteries. Adv. Vitality Mater. 10, 1903376 (2020).

    CAS 

    Google Scholar
     

  • 17.

    Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid steel–elastomer composite for strong soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Pan, C. et al. A liquid-metal–elastomer nanocomposite for stretchable dielectric supplies. Adv. Mater. 31, 1900663 (2019).


    Google Scholar
     

  • 19.

    Kim, H. J., Chen, B., Suo, Z. & Hayward, R. C. Ionoelastomer junctions between polymer networks of mounted anions and cations. Science 367, 773–776 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Park, M. et al. Extremely stretchable electrical circuits from a composite materials of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Vitality 46, 176–184 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Wang, F. et al. Progress report on part separation in polymer options. Adv. Mater. 31, 1806733 (2019).


    Google Scholar
     

  • 23.

    Website positioning, M. & Hillmyer, M. A. Reticulated nanoporous polymers by managed polymerization-induced microphase separation. Science 336, 1422–1425 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Schulze, M. W., Mcintosh, L. D., Hilmyer, M. A. & Lodge, T. P. Excessive-modulus, high-conductivty nanostructured polymer electrolyte membrane through polymerization-induced part separation. Nano Lett. 14, 122–126 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Alarco, P.-J., Abu-Lebdeh, Y., Abouimrane, A. & Armand, M. The plastic-crystalline part of succinonitrile as a common matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Choi, Okay.-H. et al. Skinny, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance versatile lithium-ion batteries. Adv. Funct. Mater. 24, 44–52 (2014).

    CAS 

    Google Scholar
     

  • 27.

    White, T. J., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J. & Guymon, C. A. Polymerization kinetics and monomer performance results in thiol-ene polymer dispersed liquid crystals. Macromolecules 40, 1112–1120 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Serbutoviez, C., Kloosterboer, J. G., Boots, H. M. J. & Touwslager, F. J. Polymerization-induced part separation. 2. Morphology of polymer-dispersed liquid crystal skinny movies. Macromolecules 29, 7690–7698 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Phillip, W. A. et al. Diffusion and move throughout nanoporous polydicyclopentadiene-based membranes. ACS Appl. Mater. Interfaces 1, 472–480 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Watson, B. L., Rolston, N., Printz, A. D. & Dauskardt, R. H. Scaffold-reinforced perovskite compound photo voltaic cells. Vitality Environ. Sci. 10, 2500–2508 (2017).

    CAS 

    Google Scholar
     

  • 31.

    Meng, J., Chu, F., Hu, J. & Li, C. Liquid polydimethylsiloxane grafting to allow dendrite-free Li plating for extremely reversible Li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019).

  • 32.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Standing and challenges in enabling the lithium steel electrode for high-energy and low-cost rechargeable batteries. Nat. Vitality 3, 16–21 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Bruce, P. G., Evans, J. & Vincent, C. A. Conductivity and transference quantity measurements on polymer electrolytes. Stable State Ion. 28, 918–922 (1988).


    Google Scholar
     

  • 34.

    Diederichsen, Okay. M., McShane, E. J. & McCloskey, B. D. Promising routes to a excessive Li+ transference quantity electrolyte for lithium ion batteries. ACS Vitality Lett. 2, 2563–2575 (2017).

    CAS 

    Google Scholar
     

  • 35.

    Timachova, Okay., Watanabe, H. & Balsara, N. P. Impact of molecular weight and salt focus on ion transport and the transference quantity in polymer electrolytes. Macromolecules 48, 7882–7888 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    He, M. et al. Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating take a look at. J. Electrochem. Soc. 162, A1725–A1729 (2015).

    CAS 

    Google Scholar
     

  • 37.

    Randau, S. et al. Benchmarking the efficiency of all-solid-state lithium batteries. Nat. Vitality 5, 259–270 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Duan, H. et al. Prolonged electrochemical window of strong electrolytes through heterogeneous multilayered construction for high-voltage lithium steel batteries. Adv. Mater. 31, 1807789 (2019).


    Google Scholar
     

  • 39.

    Yu, X. et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium steel batteries. Adv. Vitality Mater. 10, 1903939 (2020).

    CAS 

    Google Scholar
     

  • 40.

    Lopez, J. et al. A dual-crosslinking design for resilient lithium-ion conductors. Adv. Mater. 30, 1804142 (2018).


    Google Scholar
     

  • 41.

    Zhang, W., Nie, J., Li, F., Wang, Z. L. & Solar, C. A sturdy and secure solid-state lithium battery with a hybrid electrolyte membrane. Nano Vitality 45, 413–419 (2018).

    CAS 

    Google Scholar
     

  • 42.

    Wang, C. et al. Stable-state plastic crystal electrolytes: efficient safety interlayers for sulfide-based all-solid-state lithium steel batteries. Adv. Funct. Mater. 29, 1900392 (2019).


    Google Scholar
     

  • 43.

    Solar, J. et al. Hierarchical composite-solid-electrolyte with excessive electrochemical stability and interfacial regulation for reinforcing ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2021).

    CAS 

    Google Scholar
     

  • 44.

    Yao, P. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with excessive power density. Nano Lett. 18, 6113–6120 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Fu, C. et al. A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte allows Li-metal batteries. J. Mater. Chem. A 8, 2066–2073 (2020).

    CAS 

    Google Scholar
     

  • 46.

    Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Fu, C. et al. Common chemomechanical design guidelines for solid-ion conductors to stop dendrite formation in lithium steel batteries. Nat. Mater. 19, 758–766 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Xia, S. et al. Excessive-rate and large-capacity lithium steel anode enabled by quantity conformal and self-healable composite polymer electrolyte. Adv. Sci. 6, 1802353 (2019).


    Google Scholar
     

  • 49.

    Liu, Y. et al. Lithium-coated polymeric matrix at the least volume-change and dendrite-free lithium steel anode. Nat. Commun. 7, 10992 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Chen, T. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing functionality, excessive ionic conductivity and warmth resistance for dendrite-free lithium steel batteries. Nano Vitality 54, 17–25 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Lu, Q. et al. Dendrite-free, high-rate, long-life lithium steel batteries with a 3D cross-linked community polymer electrolyte. Adv. Mater. 29, 1604460 (2017).


    Google Scholar
     

  • 52.

    Dong, T. et al. A multifunctional polymer electrolyte allows ultra-long cycle-life in a high-voltage lithium steel battery. Vitality Environ. Sci. 11, 1197–1203 (2018).

    CAS 

    Google Scholar
     

  • Report

    What do you think?

    768 Points
    Upvote Downvote

    John Mulaney’s Ex Anna Marie Tendler Goes Topless In Empowering Post On Surviving Breakup: ‘S**t Got Real’ – Perez Hilton

    January 2022 Fresh Pix